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ABSTRACT: Limited-area numerical weather prediction models currently run operationally in the United States and

follow a ‘‘partially cycled’’ schedule, where sequential data assimilation is periodically interrupted by replacing model

states with solutions interpolated from a global model. While this strategy helps overcome several practical challenges

associated with real-time regional forecasting, it is no substitute for a robust sequential data assimilation approach

for research-to-operations purposes. Partial cycling can mask systematic errors in weather models, data assimilation

systems, and data preprocessing techniques, since it introduces information from a different prediction system. It also

adds extra heuristics to the model initialization steps outside the general Bayesian filtering framework from which data

assimilation methods are derived. This study uses a research-oriented modeling system, which is self-contained in the

operational Hurricane Weather Research and Forecasting (HWRF) Model package, to illustrate why next-generation

modeling systems should prioritize sequential data assimilation at early stages of development. This framework permits

the rigorous examination of all model system components—in a manner that has never been done for the HWRFModel.

Examples presented in this manuscript show how sequential data assimilation capabilities can accelerate model

advancements and increase academic involvement in operational forecasting systems at a time when the United States is

developing a new hurricane forecasting system.

SIGNIFICANCE STATEMENT: This study discusses a roadmap for designing numerical weather predictions systems

that are more accessible to the research community. It is based on the premise that the statistical framework used for

identifying initial conditions for dynamical models, such as weather predictionmodels, should play a larger role inmodel

development, observation collection, and uncertainty quantification than currently exists for regional models.While this

study uses examples motivated by one current operational weather model, the conclusions have broad implications.

Ultimately, the long-term goals set forth by leaders in the atmospheric science community demand a more holistic

evaluation of modeling systems than currently exists. This study is timely, considering the advancement of major

modeling operational modeling efforts currently under way in the United States.
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1. Introduction

The physical processes governing the life cycle of tropical cy-

clones span a large spectrum of spatial and temporal scales.

Weather phenomena of this type motivate the design of numer-

ical modeling frameworks that consider multiscale interactions in

initial conditions and forecasts. Ideally, such frameworks should

also adhere to the probabilistic nature of the analysis and pre-

diction problem posed by applications of this type. For example,

changes in vortex structure, maximum wind speeds, and storm

motion often depend on turbulent motions not represented well

by observations and models, and likely exhibit intrinsic predict-

ability limits (e.g., Lorenz 1969; Rotunno and Snyder 2008).

Therefore, the most complete depiction of an observed tropical

cyclone event is one that presents a number of plausible scenar-

ios, which match prior physical knowledge contained in numeri-

cal models with measured evidence of the true atmosphere.

The aboveparadigmfits into twomajorNationalOceanographic

and Meteorological Agency (NOAA) initiatives, namely the

Unified Forecasting System (UFS) and the Hurricane Forecast

Improvement Project (HFIP). The UFS is a community

framework for operational weather prediction and research

that respects the multiscale nature of high-impact weather

events, like tropical cyclones (Toepfer et al. 2018). Through

this project, NOAA aims to advance a flagship modeling sys-

tem based on the Finite Volume Cubed-Sphere (FV3) dy-

namical core (see NOAA/GFDL 2018). Likewise, HFIP sets

ambitious goals for improving tropical cyclone forecasts in the

United States, while emphasizing the importance of ensembles

to communicate forecast uncertainty (Gall et al. 2013). As a

part of HFIP, NOAA plans to advance the operational

Hurricane Analysis and Forecast System (HAFS) to replace

current forecast facilities as the hurricane application of the

Unified Forecast System. The main objectives for HAFS in-

clude: 1) advancement of deterministic and ensemble predic-

tion capabilities to seven days; 2) the fusion of modeling, data

assimilation, and observations to produce a record of stormCorresponding author: Dr. Jonathan Poterjoy, poterjoy@umd.edu
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analyses; and 3) improvements in statistical postprocessing

methods for extracting information regarding forecast uncer-

tainty (Marks et al. 2019). In the interim, opportunities exist for

leveraging preexisting community software to explore science

questions related to both UFS and HFIP/HAFS goals as unified

modeling and data assimilation systems continue to mature.

Current global modeling efforts at NOAA already provide a

starting point for addressing some of the challenges listed above

for operational forecasting. Namely, the Global Ensemble

Forecasting System (GEFS) seeks to provide a probabilistic

depiction of the atmosphere conditioned on recent observations.

A major deficiency in the GEFS, however, comes from the lack

of a storm-resolving effective grid spacing, which limits its ability

to capture important dynamics needed to model cloud-scale

processes. Therefore, forecasters must rely on a suite of high-

resolution limited-areamodels to supplement GEFS predictions

with missing scales of motion. For the case of tropical cyclones,

NOAA operational models include the Hurricane Weather

Research and Forecasting (HWRF) Model and the Hurricanes

in aMultiscaleOcean-coupledNonhydrostatic (HMON)model.

While a number of regional models in the United States contain

their own data assimilation systems, they all adopt partial-

cycling schedule, which increases their reliance on the Global

Forecasting System (GFS) beyond the basic purpose of pro-

viding boundary conditions. Here, partial-cycling refers to the

periodic recentering of the model on the GFS analysis. Because

of this limitation, models such as HWRF—which is used in the

current study—have never been run outside a partially cycled

framework for extensive periods.

As the weather community begins to construct future opera-

tional weather predictions systems such as HAFS, it is important

to acknowledge limitations in our past modeling systems and ex-

plore new strategies posed by research-oriented frameworks. The

most straightforward way of demonstrating where scientific

improvements—and in some cases, paradigm shifts—are needed

is by concrete examples and the development of prototypes. As

such, this manuscript explores findings from an experimental

HWRF modeling system that is built around the philosophy

outlined above. The purpose of this study is to use elementary

data assimilation strategies to 1) uncover shortcomings of one

partially cycled NOAA modeling system; 2) demonstrate out-

standing challenges associated with NOAA’s use of satellite

measurements in hurricane models; and 3) highlight the utility of

research-oriented modeling frameworks for data assimilation al-

gorithm testing. These efforts exploit a dedicated probabilistic

model framework, which will be denoted the ‘‘AOML-UMD

ensemble system’’ in the current manuscript. The AOML-UMD

ensemble system is a data assimilation and forecasting system

built around the HWRF Model. Unlike past uses of the HWRF

Model, including the HWRF prediction system run operationally

by the Environmental Modeling Center (EMC) of the National

Centers for Environmental Prediction (NCEP), the AOML-

UMD ensemble system performs data assimilation continuously

through large parts of hurricane seasons. This strategy is feasible

because the experimental system is not limited by typical time

constraints of operational modeling products.

By design, the AOML-UMD ensemble system is well-suited

for performing holistic evaluations of numerical weather

prediction systems. In particular, the authors recognize that

probabilistic forecasts for tropical cyclones remain limited by

the suboptimal quantification of initial condition uncertainty

and the misrepresentation of physical processes in numerical

weather prediction models, especially at subgrid scales. While

these error sources are often difficult to distinguish from one

another, sequential data assimilation techniques provide a

means to rigorously test components of current forecast sys-

tems and validate changes proposed to model physics, ob-

serving systems, or data assimilation methods. As a starting

point, one can examine observation-space diagnostics col-

lected over long periods of time and space, which is done in the

current study. This practice is common at many environmental

modeling centers, where statistics acquired from large samples

of model-observation comparisons help identify biases and

justify upgrades. Short-term forecasts produced between data

assimilation cycles can then be used to explore mechanisms

leading to errors in weather and climate predictions (e.g.,

Rodwell and Jung 2008; Martin et al. 2010; Cavallo et al. 2016).

Research of this type leverages the vast amount of ‘‘model state

corrections’’ or analysis increments produced when performing

data assimilation over long periods of time to determine why

model trajectories systematically deviate from observations. This

strategy is conceptually simple, but requires the dedicated support

for a sequential data assimilation system—even if not used for

real-time forecasting.

The framework discussed above contains a number of ad-

ditional properties that distinguish it from regional modeling

systems typically used for tropical cyclone research. A major

difference is its use of an extensive regional domain, which

covers an area large enough to permit the time-dependent

calculation of bias correction coefficients used to assimilate

radiances. This feature allows the AOML-UMD ensemble

system to act as a standalone modeling framework, requiring a

global model only for boundary conditions in the samemanner

as the HAFS system currently under development. The large

domain size also enables interactions between tropical cy-

clones and the synoptic-scale environment represented across

multiple hurricane basins, whichmotivated the development of

‘‘basin-scale’’ configurations of HWRF run at AOML (Zhang

et al. 2016; Alaka et al. 2017). Users have full control over how

multiscale weather features are represented in model initial

conditions through choices of model domain and physics con-

figurations, observations, observation preprocessing, and data

assimilation. Consequently, the experimental prediction sys-

tem contains a large parameter space for generating and cali-

brating ensemble forecasts. As will be described in the present

manuscript, the above features make the AOML-UMD en-

semble system a practical testbed for examining research

questions posed by HFIP, while providing a cost-effective

(regional) framework for exploring data assimilation and

forecasting plans related to HAFS and future unified modeling

efforts at NOAA.

The current manuscript introduces the AOML-UMD en-

semble prediction system and summarizes findings that are

relevant to the development of a next-generation hurricane

modeling system. Given the methodology adopted for this

work, most results will focus on observations-space verification
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of analyses and short-term forecasts generated during the

seasonal data assimilation experiments carried out over the

2017 and 2018 Atlantic and eastern North Pacific hurricane

seasons. Section 2 presents the data assimilation and modeling

framework. Section 3 describes the AOML-UMD ensemble

system and its configuration for HWRF. Section 4 discusses

results from experiments that explore multimonth biases in

HWRF and satellite data assimilation practices used by the

operational system. This section also explores strategies for

testing new data assimilation algorithms, including a localized

particle filter. The last section summarizes findings and dis-

cusses their relevance to the broader operational weather

forecasting community.

2. Preexisting community infrastructure

The AOML-UMD ensemble system relies entirely on com-

munity software maintained by the Developmental Testbed

Center (DTC), a distributed facility for research and operational

model development managed by NOAA, the National Center

for Atmospheric Research (NCAR), and the U.S. Air Force.

This software includes multiple components of the operational

HWRF forecasting system, such as the scripting infrastructure

and workflow manager needed for its implementation, and

various parts of the Gridpoint Statistical Interpolation (GSI)

data assimilation package. In this section, we describe the op-

erational HWRF forecasting system and discuss ongoing mod-

eling efforts relevant to the AOML-UMD ensemble system.

a. The operational HWRF system

HWRF is a regional model operated by EMC to provide

real-time numerical guidance for tropical cyclone forecasting

operations in the United States and its territories. It uses the

Nonhydrostatic Mesoscale Model (NMM) dynamical core of

the Weather Research and Forecasting (WRF) model and

physics options tuned specifically for tropical cyclones and

their environments (Gopalakrishnan et al. 2010; Atlas et al.

2015). All experiments described in this study use the 2017

version ofHWRF.We refer to Biswas et al. (2017) for technical

details of this model version, including a list of physics options.

EMC maintains the operational HWRF Model within a

comprehensive data assimilation and forecasting platform,

which includes annual changes to model physics, domain

configuration, data assimilation, and observation processing.

The most recent configurations all use a fixed outer domain

with two storm-following inner nests centered on a designated

tropical cyclone location. The model is initialized every 6 h

following a rather complex workflow: 1) all domains are re-

centered on the most recent tropical cyclone location, deter-

mined by the National Hurricane Center (NHC), Central

Pacific Hurricane Center (CPHC), or Joint Typhoon Warning

Center (JTWC); 2) the parent domain inherits initial condi-

tions interpolated from theGFS analysis; and 3) the inner nests

are blended with the interpolated GFS solution near the pe-

riphery, but retain a solution coming from a cycled hybrid GSI-

based ensemble 3D-variational update (3D-Var) in the vicinity

of the storm (Zhang and Pu 2020). The hybrid data assimilation

preceding the third step occurs after the tropical cyclone vortex

is removed and relocated in prior model states. The relocated

vortex is either modified from a previous forecast or replaced

completely, depending on the storm intensity and whether a

previous HWRF forecast is available at the time. We encour-

age readers to review Biswas et al. (2017) for a more complete

description of procedures followed to run the HWRF Model.

In addition to the deterministic HWRF system, EMC

operated a real-time HWRF ensemble to provide probabilistic

guidance for tropical cyclones up until 2019 (Zhang et al. 2018).

Like the deterministic implementation, the ensemble relied on

the GFS for environmental initial conditions to avoid the

computational cost of running an ensemble data assimilation

system for the model’s parent domain.

b. HWRF systems designed for data assimilation and
ensemble forecasting research

Given the narrow focus of the operational HWRF system

described above, a number of data assimilation and prediction

systems have emerged to fill the needs of the research commu-

nity. This effort started at AOML with the Aksoy et al. (2012)

HWRF Ensemble Data Assimilation System (HEDAS), which

is based on the same sequential EnKF-based methodology used

by the AOML-UMD ensemble system. Early applications of

HEDAS focused on assimilating aircraft measurements from

hurricane reconnaissance flights (Aksoy et al. 2013), but it is now

used for a variety of data assimilation and observing system

experiments atAOML (e.g., Steward et al. 2017; Christophersen

et al. 2017).While HEDAS is a practical resource for examining

inner-core tropical cyclone processes with HWRF, it currently

has limited technical support outside AOML. For this reason,

applications of HEDAS are restricted to modeling efforts

smaller than the ones discussed in this manuscript.

Following HEDAS, Lu et al. (2017) introduced a research-

oriented data assimilation and prediction system for HWRF

that mirrors the developmental needs of the operational sys-

tem. This framework uses hybrid three- and four-dimensional

data assimilation methods to form high-resolution determin-

istic estimates of the model state over the life cycle of storms.

The Lu et al. (2017) HWRF system has several added benefits

over the operational version, such as four-dimensional data

assimilation capabilities and some flexibility in choosing up-

date frequency and domain configurations. Like the opera-

tional HWRF implementations, data assimilation procedures

operate primarily on model variables in the vicinity of tropical

cyclones, requiring the GFS model to provide environmental

conditions.

c. The experimental ‘‘basin-scale’’ HWRF system

When multiple storms exist simultaneously in the Atlantic

hurricane basin, EMC operates multiple runs of the HWRF

Model, providing independent numerical guidance for each

storm. Motivated by the needs of future global weather pre-

diction systems, scientists at AOML and EMC collaborated to

form a parallel research version of HWRF called the ‘‘basin-

scale’’ HWRF (Zhang et al. 2016), denoted hereafter as

HWRF-b. The HWRF-b model uses a much larger fixed outer

domain than the operational system, which spans multiple

hurricane basins. It also runs multiple sets of movable nests,
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which overlap when neighboring tropical cyclones are suffi-

ciently close together. In addition to using the HWRF-b for

research, AOML scientists run the model in a near-real-time

forecast setting during hurricane seasons, an exercise that star-

ted in 2013.1 The experimental model has demonstrated benefits

in the form of superior tropical cyclone track forecasts over the

operational system (Alaka et al. 2017, 2020), which is an antic-

ipated outcome given the large domain and refined nesting

strategy. The experimental model uses the same vortex reloca-

tion strategies as the operational model, and also relies mostly

on the GFS analysis to provide its initial conditions; see Alaka

et al. (2020) for details. Therefore, including data assimilation

capabilities to the HWRF-b parent domain provides a natural

progression from current modeling efforts at AOML. This fea-

ture brings the experimental model a step closer to achieving a

framework that mimics how future global models with multiple

nested domains will operate with sequential data assimilation.

3. The AOML-UMD ensemble forecasting system

a. Motivation

The operational HWRF modeling system provides valuable

numerical guidance for weather forecasters, but its reliance on

GFS environmental conditions, limited use of sequential data

assimilation, and heuristic vortex initialization procedures

provide obstacles for scientists who wish to use the system for

research. For example, empirical corrections made to prior

tropical cyclone vortices before assimilatingmeasurements can

mask technical or fundamental issues with GSI data assimila-

tion schemes or reduce the impact of potentially valuable new

observing systems. Likewise, annual upgrades to the GFS

model will ultimately impact the skill of HWRF in unknown

ways. These factors could slow long-term progress toward

improving forecast skill. In addition, the operational system

does not permit the accumulation of observation-space model

forecast diagnostics over long periods of time and space, owing

to its intermittent use during hurricane seasons. This limitation

reduces the amount of information available for examining

biases in themodel, which are needed to identify deficiencies in

data assimilation or physical parameterization schemes. For

similar reasons, the limited use of sequential data assimilation

may also have large implications for how bias-correction pro-

cedures are implemented for satellite radiance measurements

during their assimilation. Last, the HWRF initialization pro-

cess, which is also adopted by the current HWRF-b system,

decouples tropical cyclones from their environments. This

feature, combined with the lack of data assimilation on the

HWRF parent domain, makes it difficult to identify realistic

modes of error growth in ensemble forecasts.

Past research-based HWRF configurations described in

section 2b provide additional data assimilation and forecasting

flexibility over the operational system, but contain the same

limitations for probabilistic synoptic-scale weather prediction

and bias estimation. Therefore, the construction of ensemble

forecasts for research and operational prediction requires a

standalone regional data assimilation system as described in

this manuscript.

b. A regional ensemble framework for HWRF

In this section, we introduce the AOML-UMD ensemble sys-

tem, which includes sequential data assimilation and medium-

range probabilistic forecasting components. The regional forecast

system leverages the same Python-based scripting package as the

operational HWRF Model, which means it uses a similar orga-

nization of directories and follows the same flow of observations,

model states, andmetadata. By construction, any advancement to

software infrastructure, such as the addition of new observation

types, can transition seamlessly into the operational HWRF sys-

tem for testing—and vice versa. In doing so, this system carries

forward with a strategy for research-to-operations activities that

started with previous deterministic versions of the HWRF-b

model (Zhang et al. 2016; Alaka et al. 2020).

Like the deterministic HWRF-b modeling system, the

AOML-UMD ensemble uses an extensive static parent do-

main, which spans large portions of the Atlantic and eastern

North Pacific hurricane basins; see Fig. 1 for 2017 domain

configuration. This system uses the GSI ensemble Kalman fil-

ter (EnKF) to update a 60-member ensemble of HWRFModel

states every 6 h to reflect the most recent conventional and

satellite observations. The suite of measurements accessed by

the data assimilation system is identical to the operational

HWRF Model, thus allowing for real-time and retrospective

forecasting experiments using both routinely collected mea-

surements as well as those taken from aircraft reconnaissance

missions. Following data assimilation, the system subsamples a

specified number of ensemble members for producing proba-

bilistic forecasts. For example, the 2018 version generates

20-member 5-day forecasts each day at 0000 and 1200 UTC

using a single static domain for each member.

While the AOML-UMD ensemble prediction system rep-

resents a step toward a more autonomous modeling platform

for HWRF, its basic structure resembles past efforts using

other regional models. For example, the NCAR Advanced

Research version of WRF (ARW) ensemble system (Schwartz

et al. 2015) and the German Weather Service kilometer-scale

ensemble data assimilation for the Consortium for Small-Scale

Modeling (COSMO) or ‘‘KENDA’’ forecasting system (Schraff

et al. 2016) both perform uninterrupted sequential data assimi-

lation for extensive periods. Adopting this strategy greatly re-

duces the influence of global models on regional analysis and

forecast verifications, thus allowing for a more transparent

evaluation of model physics, data assimilation algorithms and

parameters, observation quality control mechanisms, and

observation impact, than all past implementations of the

HWRF Model.

c. Data assimilation configuration

The AOML-UMD ensemble system relies solely on the GSI

EnKF data assimilation system for providing 6-h updates to

HWRFModel states over time. The GSI EnKF is based on the

1An HFIP computing allocation on NOAA’s research super-

computer, Jet, provides the computing resources for performing

these experiments.
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Whitaker and Hamill (2002) ensemble square root filter and is

the same ensemble data assimilation method used by multiple

operational and experimental models in the United States,

such as the GFS and HWRFModels, and the High-Resolution

Rapid Refresh ensemble (HRRRE; Dowell 2020). In practice,

ensemble data assimilation systems require modifications of

sample-estimated error covariances to ensure they provide

accurate and stable results for high-dimensional applications

like numerical weather prediction. These mechanisms include

covariance localization and variance inflation. For covariance

localization, the GSI EnKF uses a continuous, smooth corre-

lation function with compact support, given by Eq. (4.10) of

Gaspari and Cohn (1999) to damp ensemble-estimated corre-

lations to zero beyond a specified cutoff value as described in

Hamill et al. (2001). To maintain variance in the ensemble

following each data assimilation step, ensemble perturbations

are inflated using the relaxation to prior spread (RTPS) tech-

nique described in Whitaker and Hamill (2012).

Both localization and RTPS methods require tunable pa-

rameters, which we examine through retrospective tests during

the 2017 hurricane season (not shown). Using prior root-mean-

square (RMS) fit to observations and prior observation-space

ensemble spread, we arrived at the following EnKF configu-

ration: 1200-km horizontal localization cutoff for Northern and

Southern Hemisphere observations reduced to 900 km in the

tropics; 1 scale-height vertical localization cutoff for conven-

tional measurements; 2 scale-height vertical localization cutoff

for satellite radiance measurements; 95% relaxation back to

prior spread in the Northern and Southern Hemisphere re-

duced to 90% in the tropics.

Being a regional modeling system, the AOML-UMD en-

semble requires boundary conditions from a global forecast

model to operate, which we generate using posterior members

and 6-h forecasts from the global data assimilation system

(GDAS) ensemble. We interpolate each posterior HWRF

member to posterior GFS ensemble members within a 360-km

border on the domain boundary. The interpolation step helps

reduce the mismatch between boundary conditions introduced

from the GFS and posterior members produced during data

assimilation. We also replace soil temperature and moisture

and sea surface temperatures in posterior HWRF members

with values from the GFS analysis, thus taking surface boundary

conditions from the global model as well.

The data assimilation used for the AOML-UMD system

performs its own bias correction for clear-air satellite radiance

measurements, which is done through state augmentation

during EnKF data assimilation (Miyoshi et al. 2010). Zhu et al.

(2019) found this approach to perform comparably to the

variational bias correction method used by the operational

HWRF system. Assimilating radiance measurements requires

the removal of biases coming from instruments, measurement

operators, and the forecast model before they can be properly

assimilated (e.g., Derber and Wu 1998). Because of the ex-

tensive domain size and continuous cycling of model states

through time, estimating these biases adds value to the re-

sulting prediction system; see section 4 for details. This feature

provides another large distinction between the current HWRF

data assimilation system and past strategies.

4. Seasonal HWRF experiments

During the 2017 and 2018 hurricane seasons, we used the

NOAA Jet high-performance computing system to run the

AOML-UMD ensemble as an HFIP demo project. The 2017

allocation provided resources for performing the first major

testing of the experimental modeling system in near–real time,

FIG. 1. TheHWRF domain used for the 2017HFIP demo is outlined on amapwith land boundaries. Also plotted

are contours ofMSLP every 5 hPa for a single posteriormember and locations of satellite radiancemeasurements at

1200 UTC 20 Jul 2017. The satellite data types are color coded according to the legend on the right.
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following an initial trial period where the EnKF data assimila-

tion system was tuned for the application. These tests examine

whether the HWRF Model can run for long periods using un-

interrupted sequential data assimilation to maintain consistency

between the model and real atmosphere. They also provide a

basis for retrospective modeling experiments to be performed

after hurricane seasons, as demonstrated in sections 4b–c.

While near-real-time tests were performed in two seasons,

results from 2018 were heavily biased, owing to a major issue

uncovered in the 2018 operational HWRF modeling system

during this study. This season was the first in which GOES-16

provided operational geostationary satellite coverage over the

Atlantic region, formally replacing GOES-13 as GOES-East.

Due to an error in naming convention for satellite measure-

ments, atmospheric motion vectors (AMVs) estimated from

GOES-East failed to be assimilated by our modeling system.

Given that AMVs provide the only extensive wind information

over open oceans, the sequential data assimilation strategy

showed obvious differences from the GFS model, which ulti-

mately led to this finding. This problemwent undetected by the

operational community because partial-cycling and vortex re-

location strategies helped mask major deficiencies in data

availability and assimilation strategy. The error ultimately

nullifies any results obtained during the 2018 season, but pro-

vides another example for why developing sequential data

assimilation capabilities are crucial for rigorously testing

modeling systems outside of operations.

Despite the above limitations, the 2017 season provided ample

data for evaluating various components of the HWRF modeling

system and carrying forward with data assimilation experiments

that require a standalone modeling system. This section discusses

major findings from these numerical experiments.

a. Three-month sequential data assimilation experiments
with HWRF

The AOML-UMD ensemble system ran nonstop from

20 July 2017 to 31 October 2017 during the 2017 HFIP real-

time demo, amounting to 415 sets of EnKF prior and posterior

members. To the best of our knowledge, this experiment pro-

vides the longest period of uninterrupted data assimilation for

the HWRFModel to date, thus providing a unique set of error

statistics for evaluating its performance. These tests are carried

out using a model grid spacing comparable to parent domains

used by HWRF in past seasons, which parameterized convec-

tion. Therefore, error metrics used for this study are dominated

mostly by errors in TC environments instead of errors within

and near tropical cyclones.

For the 2017 experiment, we use the same model physics as

the 2017 operational HWRF Model but with a modified do-

main configuration. The HWRFModel runs on a 5983 6323
61 static grid with 18-km horizontal grid spacing and a model

top at 2 hPa. The model levels follow the same vertical

h coordinates as the 2016 version of the operational HWRF

Model, which also used a 2-hPa top; note the operational

HWRF transitioned to a 5-hPa top for the 2017 version. Similar

to past studies using sequential data assimilation to identify

potential deficiencies in model physics, observations, or data

assimilation systems, we use observation-space diagnostics for

prior ensembles (6-h forecasts) to summarize errors in the

experimental modeling system. We calculate root-mean-square

differences (RMSDs) between prior ensemble means and con-

ventional observations, alongside the ‘‘expected RMSDs.’’ These

quantities reflect domain-average errors for sets of observations

assimilated during the same cycle, so that mean RMSD at a given

time is given by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1/Ny)�Ny

i51(yi 2 xi)
2

q
, where yi is the ith veri-

fying observation and xi is the prior ensemble mean projected

onto yi. Likewise, expectedRMSDs are estimated as a function of

error variance for each observation, s2
yi
, and the variance of prior

ensemble members projected into observation space, s2
xi
; i.e.,

expected RMSD 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1/Ny)�Ny

i51(s
2
yi
1s2

xi
)

q
. Provided that the

assigned observation error variance and the ensemble-estimated

prior variance are accurate characterizations of the true errors,

this metric should match the RMSDs when averaged over large

numbers of independent samples. In this section, we discuss av-

erage RMSDs, expected RMSDs, mean error (bias), and obser-

vation counts accumulated over the test period. These ‘‘summary

statistics’’ provide a quantitative measure of how effective the

data assimilation system is atmaintaining consistency between the

HWRF Model and the observed atmosphere.

The first part of this study examines issues that may cause

large-domain configurations of HWRF to ‘‘drift’’ from obser-

vations with time, despite the use of a continuously cycled data

assimilation system. Figure 2 shows time series of summary

statistics, calculated for prior zonal wind u andmeridional wind

y. These values are calculated from atmospheric soundings,

aircraft measurements, AMVs, as well as surface observing

systems onboard ships, buoys, etc. In addition to the forecast

metrics shown in the top panels of Fig. 2, the number of

available observations at each cycle is plotted alongside the

number of observations that pass thinning and quality control

(QC) procedures. The observation counts indicate how many

observations go into verification and help track the acceptance

rate of measurements during data assimilation experiments.

We also calculate time-average errors over the last 3 months of

sequential data assimilation and bin the metrics according to

pressure, i.e., in 50-hPa bins from the surface to 100 hPa

(Fig. 3). In doing so, we omit the first 12 days of the experiment

to allow ensemble-estimated errors and satellite bias correction

coefficients to ‘‘spin up’’ from the GFS solution. This spin-up

time is decided by the period needed for channel 10 (57GHz) of

theAdvancedMicrowave SoundingUnit (AMSU-A) brightness

temperatures to yield quasi-steady innovations (see Fig. 8). As

discussed in a future section, this channel is sensitive to strato-

spheric temperatures; therefore, the low model-top of HWRF

provides a known bias difference from GFS.

The summary statistics in Figs. 2 and 3 show near-steady

RMSDs over the test period, along with low domain-average

bias and a relatively constant stream of observations getting

passed through observation preprocessing steps. The pair of

figures also show a close match between RMSDs and expected

RMSDs, which indicates the data assimilation system is cali-

brated to provide an appropriate estimate of 6-h wind errors on

average. Figures 4 and 5 show the same summary statistics

described above, but for temperature T and water vapor mixing

ratio qy. Unlike the wind variables, T and qy exhibit a notable

amount of bias throughout the cycling period, which follow from
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potential deficiencies in the HWRF Model, data assimilation

system, or error characterization for incoming measurements.

The vertical extent of qy errors, for example, shows a negative

moisture bias in low levels of the model domain which reaches a

peak minimum value of 21 g kg21 near the surface. A time se-

ries of domain-mean RMSDs and bias show that both qy error

metrics decrease steadily over the 3-month period (Fig. 4b). By

comparing qy error profiles from the first and last months of the

FIG. 2. (a),(b) Domain-average time series of observation-space statistics for (left) u and (right) y. The statistics

includeRMSDs (solid blue lines), expectedRMSDs (dashed blue lines), andmean error (red lines). (c),(d)Number of

observations (black lines) and number of observations that pass thinning and quality control procedures (red lines).

FIG. 3. Time-average RMSDs (solid blue lines), expected RMSDs (dashed blue lines), and mean error binned (red

lines) by pressure level for (a) u and (b) y.
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experiment (Fig. 6a) we find that the improvement occurs be-

cause of a decrease inmagnitude for low-levelmoisture biaswith

time. The same figure also shows a reduction in qy RMSDs

through all layers verified. A part of the qy bias comes from the

GDAS initial conditions at the beginning of the experiment. Its

reduction with time closely follows the adjustment of satellite

bias correction coefficients for satellite radiances, which are

taken to be the initial GDAS values over the experiments; we

discuss this factor in section 4b. In addition, the verification

shows overestimated prior ensemble spread in qy and under-

estimated prior ensemble spread in T (Figs. 4 and 5). This result

indicates possible deficiencies in error growth by the EnKF data

assimilation, or a misspecification of observation error variances

for the observing platforms providing data.

FIG. 4. As in Fig. 2, but for T and qy.

FIG. 5. As in Fig. 3, but for T and qy.
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The sequential data assimilation still contains clear biases

and suboptimal uncertainty estimates for T and qy after cali-

bration. Identifying and removing the source of these biases

would require a more extensive examination of individual

modeling system components than provided in the current

study, but the evidence for these biases clearly exists in our

experiments. Before arriving at these results, much more

egregious problems in the HWRFmodeling system produced a

significant amount of bias or ‘‘model drift,’’ which was diag-

nosed quickly from the observation-space statistics. For ex-

ample, Fig. 7 shows a week-long time series of prior and

posterior mean RMSDs, expected RMSDs, and bias for qy
observations, starting from 20 July.2 The errors are calculated

over the Northern Hemisphere of our domain, where we

identified the largest amount of bias in qualitative comparisons

of prior fields and observations. In this figure, the qy statistics

clearly show model drift for specific configurations of the

HWRFModel. These experiments reveal that 2017 and earlier

versions of the HWRF Model incorrectly specify the geo-

graphical locations of model grid points in the domain when

nests are not present, which leads to large errors in shortwave

radiation for single-domain configurations. The model error

results in a large bias in surface thermodynamic variables that

FIG. 6. Time-average errors binned by pressure level are stratified for qy over (a) the months of August (dark

lines) and October (light lines). (b) The same metrics are averaged over the two months of August–September to

compare HWRF BC (dark lines) and GDAS BC (light lines) experiments.

FIG. 7. Domain-average time series of prior and posterior

RMSDs, expected RMSDs, and bias for qy during initial trial of

AOML-UMD ensemble system.

2 Prior and posterior errors are plotted together at the same

update times, thus producing the observed ‘‘sawtooth’’ pattern.
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carries through to subsequent data assimilation cycles. We

suspect this issue may have impacted past decisions regarding

data assimilation development for the HWRF Model. For ex-

ample, section 1.1 of Tallapragada et al. (2014) note problems

in attempting sequential data assimilation for large-scale fields

in the HWRFModel, citing a notable amount of model drift in

their experiments. Deficiencies of this type can be difficult to

diagnose by validating model forecasts initialized from a dif-

ferent model (such as GFS) or using partial cycling, as they are

often indistinguishable from the many other error sources

present in free-running forecasts. Once identified by the cy-

cling DA experiments, we implemented a correction to the

model that allowed this study to continue.

b. Satellite radiance data assimilation capability

A secondary objective for carrying out the 2017 real-time

testing is to experiment with time-dependent satellite bias

correction for the HWRF Model. Deficiencies in physical pa-

rameterization schemes, radiative transfer models, and sensors

on satellite instruments can lead to systematic mismatches

between prior model states and radiance measurements (Rizzi

and Matricardi 1998). These errors often manifest themselves

as a bias in radiance innovations, which must be removed to

satisfy assumptions built into data assimilation algorithms. A

common strategy for global modeling systems is to perform an

adaptive estimation of biases (e.g., Derber and Wu 1998;

Harris and Kelly 2001). Online bias calculations can capture

temporal changes in error statistics, such as those caused by

instrument sensor failure or seasonal shifts in model bias

characteristics (Auligné et al. 2007).

In GSI, bias is included in measurement operator calcula-

tions for brightness temperatures Tb. This operator is given by

~h(x,b)5 h(x)1�
N

i51

b
i
p
i
(x)1�

K

j51

b
N1j

f j , (1)

where h(x) is the original measurement operator containing a

radiative transfer model, and bias is calculated as a weighted

sum of airmass predictors pi(x), and a Kth-order polynomial

function of viewing angle f. The airmass predictors include a

global offset term (i.e., p05 1), total column cloud liquid water,

temperature lapse rate, and the square of lapse rate, while the

viewing angle bias is represented by a fourth-order polynomial.

The vector b, which stores the weighting coefficient in the right

two terms of (1), is updated alongside model state vectors

within the EnKF using the strategy outlined in Miyoshi et al.

(2010). This process differs from the approach used by GSI

3DVar and 4DEnVar, which contain an extra term for b in the

variational cost function. We refer readers to Zhu et al. (2014)

for a full description and motivation for the radiance bias

model used by GSI.

Estimating b for statistical bias correction schemes requires

large samples of independent model-observation comparisons,

which is not often feasible for regional models with small do-

mains (Lin et al. 2017). For example, the operational HWRF

system must rely on b values estimated from the GDAS.

Figure 1 shows the domain size and spatial distribution of

satellite radiance locations at one time during the 2017

experiment period. Because our data assimilation system

considers a much larger sample of radiance innovations than

current HWRF configurations, we revisit current procedures

used to assimilate satellite measurements. We assess the utility

of performing our own bias correction by considering

observation-space prior statistics and acceptance rates from

conventional and radiance measurements. These statistics

can identify potential problems with satellite data assimi-

lation procedures in the AOML-UMD system and help

guide future research directions.

As shown in section 4a, prior RMSDs, biases, and accep-

tance rates for conventional observations show no decline in

short-range forecast performance over the test period, which is

one indication that the EnKF bias correction and assimilation

steps are operating effectively. A close inspection of individual

instrument channels provides amore direct examination of this

feature. For example, Fig. 8a shows a time series of prior Tb bias

with and without bias correction for channel 10 of AMSU-A on

the NOAA-15 polar-orbiting satellite. Because this channel is

sensitive to stratospheric temperature, the low model top of our

HWRF domain (at 2 hPa) provides a constant source of Tb bias

in measurement operator calculations. After about 10 days of

sequential data assimilation, the bias correction scheme is able

to capture most of the bias and increase the observation ac-

ceptance rate from 0% to about 50% from a thinned subset of

observations (Fig. 8b). This demonstration provides a sanity

check on the bias model and bias correction coefficient estima-

tion features of the GSI EnKF, since a major source of sys-

tematic error is known. In practice, the operational HWRF

forecast system uses a blending of prior HWRF and GFS ther-

modynamic fields to fill-in upper levels of the atmosphere

missing during radiance measurement operator calculations

(Biswas et al. 2017). For simplicity, we turn off this option for the

HWRF forecasting system and allow the bias correction proce-

dures to account for the systematic error.

FIG. 8. (a) Time series of domain-average prior observation-

space brightness temperature bias before bias correction (red lines)

and after bias correction (blue lines) for channel 10 of AMSU-A.

(b) Time series of acceptance rate for the measurements.
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The AMSU-A example shown in Fig. 8 is a special case, where

a truncated model top provides a large bias in observation-space

priors, and the spatial and temporal coverage of measurements is

sufficient for identifying the dominant error source. Though not

shown,wefind thebias correction algorithm tobe less effective for

certain observing systems, such as channels of the GOES-15

sounder. We hypothesize this limitation follows from the lack of

independent measurements passing through the data assimilation

system; the number of unique GOES sounder observation loca-

tions over the HWRF domain is about an order of magnitude

smaller than what is provided by other satellite platforms. This

problem causes most GOES-15 sounder measurements to be re-

jected by quality control.

We also identify situations where the bias correction oper-

ates effectively, while yielding a substantially different set of b

coefficients than those estimated byGDAS for theGFSmodel.

For this demonstration, we choose channel 3 (183GHz) of the

Microwave Humidity Sounder (MHS) on NOAA-18. The as-

similation of these measurements is not directly affected by the

2-hPamodel top specified in ourHWRF configuration, as is the

case for channel 10 of AMSU-A (see discussion above). It is,

however, very sensitive to lower tropospheric moisture, which

Fig. 5b suggests is vastly different between GFS and HWRF.

Figure 9a shows the time series of domain-average prior Tb

bias for these measurements before and after applying the bias

correction, and Figs. 9b and 9d show the corresponding change

in angle and airmass bi terms relative to GDAS. The prior bias

before performing a correction has values of about 1K im-

mediately after initializing the experiment from GFS, but bias

values increase over the first few weeks before saturating to

near 2K. This finding suggests that, on average, HWRF yields a

’1-K larger difference in MHS channel-3 Tb for this satellite

compared to GFS. During this period, the radiance bias cor-

rection scheme adjusts several coefficients in b to counteract

the new bias sources. A major adjustment occurs in the global

offset term for airmass coefficients, which can be easily dis-

tinguished as the largest term in Fig. 9d. Likewise, we observe

notable changes in bi for the squared lapse rate predictor

(coefficient with largest negative value in Fig. 9d) and angle

terms (Fig. 9b). Though not shown, a similar adjustment is

found for channel 3 of the MHS on the Meteorological

Operational satellite-A (Metop-A).

The above findings motivate an additional data assimilation

experiment to investigate the utility of online bias correction

over the operational strategy for HWRF, which uses values

directly from GDAS. Following a July spin up period, we re-

peat the sequential data assimilation over the months of

August and September, but adopt time-dependent b from

GDAS instead of estimating these coefficients online. For this

test, measurement operators take advantage of the same

strategy adopted by the operational HWRFModel, which is to

blend prior HWRF andGFS thermodynamic fields to fill-in the

atmosphere above the HWRF Model top (Biswas et al. 2017).

In doing so, the additional experiment (denoted GDAS BC)

provides a clean view of how GDAS biases can influence

HWRF analyses through satellite data assimilation.

We find the choice of bias correction to have the largest

impact on qy, which is to be expected given that this variable

exhibits the largest change in RMSD and bias over the ex-

periment period (Fig. 6a). For this reason, we omit any dis-

cussion on wind and T in this comparison. Figure 6b shows

profiles of prior qy RMSD, bias, and spread for the online

(HWRF BC) and GDAS BC experiments, averaged over the

months of August and September. The figure indicates smaller

RMSDs for the online experiment at all vertical levels. It also

shows smaller bias in the HWRF BC experiment from the

surface to 500 hPa, suggesting that GDAS bias coefficients

explain a portion of the elevated low-level qy errors near the

beginning of experiments. This result is somewhat counterin-

tuitive, since the HWRF BC experiment yields the smallest

prior fit to channel-3 MHS measurements at the beginning of

our experiments (Fig. 9), where b was closer to GDAS values.

Our findings underscore the complexity of interpreting com-

parisons between models and observations that are thought to

be biased. In this case, we hypothesize that either persistent

errors in the GFS partially cancel errors in the measurement

FIG. 9. (a) Time series of domain-average prior observation-space brightness temperature bias before bias

correction (red lines) and after bias correction (blue lines) for channel 3 ofMHS. (c) Time series of acceptance rate

for the measurements. The time evolution of (b) airmass and (d) viewing angle bias correction coefficients for

GDAS (red) and HWRF (black).
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operator or observed radiance measurements, or an inappro-

priate specification of b propagates bias to qy during early

cycles. The experiment also reveals that small positive qy biases

emerging above 500 hPa in the HWRF BC experiment are

caused by a suboptimal treatment of upper-level biases. The

result likely comes from the lowHWRFModel top and decision

to not adopt the operational GDAS-HWRF prior blending

strategy in this experiment, thus providing further justification

for this practice.

While online satellite bias correction may not be opera-

tionally feasible for HWRF, comparisons of this type provide

valuable information regarding the HWRFModel—or how its

bias characteristics differ from GFS. Online bias correction

approaches also provide a valid benchmark for examining the

impact of new satellite data assimilation and quality control

strategies, which may be sensitive to biases and require a

dedicated framework that is not heavily influenced by outside

bias sources that cannot be accounted for.

c. New algorithm testing

In addition to providing a platform for exploring choices of

model and satellite data assimilation configuration, the AOML-

UMDensemble system also provides an appropriate framework

for rigorously testing new data assimilation methodology. This

section describes how previously run experiments are used for

this purpose.

As discussed in previous sections, satellite radiance measure-

ments require a dedicated sequential data assimilation system

operating on either a global or large regional domain to accurately

estimate and remove biases. While these biases can depend on

assumptionsmade by data assimilation algorithms, they tend to be

dominated by observations, measurement operators, and model

errors (Dee and da Silva 1998; Eyre 2016). Therefore, modeling

experiments constructed to examine new data assimilation algo-

rithms can recycle previously estimated bias coefficients, which

reduces the restriction on domain size typically needed for these

measurements, so long as the model resolution and physical

parameterization schemes are kept constant. This simplification

greatly reduces the domain size needed to perform numerous

experiments, thus making the rigorous evaluation of new data

assimilation methodology significantly more affordable.

In this section, we leverage past experiments performed with

the AOML-UMD ensemble system to test a new ensemble data

assimilation system based on particle filters (PFs). Particle filters

are sequential Monte Carlo methods that make no parametric

assumptions for the underlying prior and posterior error distri-

butions used during data assimilation. In doing so, they avoid

Gaussian assumptions, which are built into the formulation of

EnKFs, variational methods, and hybrid methods used within

modern weather prediction systems (Bannister 2017). The the-

oretical benefits of PFs make them powerful tools for studying

and predicting nonlinear dynamical systems, which has led to a

considerable effort in the geoscience community to implement

PF-based techniques for nonlinear problems such as weather

prediction; see Van Leeuwen (2019) for a review.

Similar to EnKFs, high-dimensional applications of PFs

require a careful treatment of sampling errors through strate-

gies such as localization. One such method is the Poterjoy

(2016) local PF, which has been tested extensively for low- and

high-dimensional idealized models (Poterjoy and Anderson

2016; Poterjoy et al. 2017), and to a limited extent for real

convective-scale applications with the WRF model (Poterjoy

et al. 2019). These studies, however, have not demonstrated the

feasibility of using the local PF for large multiscale applications,

such as tropical cyclone weather forecasting. Given that much of

the complexity in applying localized particle filter algorithms

comes in the sampling step (i.e., the process of generating

equally likely members from the posterior distribution), mod-

eling systems that are restricted to partial cycling are not well

suited for vetting algorithms of this type.

Using the AOML-UMD ensemble system, we add local PF

capabilities to GSI and perform direct comparisons with the

GSI EnKF over a month-long period. These experiments use a

reduced domain size, shown in Fig. 10, and take place over the

FIG. 10. The HWRF domain used for local PF experiments is outlined on a map with land boundaries. Also

plotted are contours of MSLP every 5 hPa for a single posterior member, locations of conventional measurements

at one time during the experiments (0000 UTC 8 Sep 2017), and the verification domain (red hatched region).

Observation types are color coded according to the legend on the right.
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entire month of September 2017. Several major hurricanes

from the 2017 season (i.e., Irma, Jose, Katia, Lee, and

Maria) formed over the selected domain and period, thus

providing a challenging test period for comparing data as-

similation algorithms. The local PF and EnKF assimilate the

same conventional and clear-sky satellite radiance measure-

ments used for season-long testing, except satellite bias correc-

tion values come directly from the previously run large-domain

experiments at each assimilation time. The domain configura-

tion and ensemble size are also identical to past experiments,

with the only exception being the lateral coverage of the domain.

Before performing comparisons with the EnKF, we thor-

oughly test various components of the new GSI local PF over a

shortened (14-day) trial period to ensure the new algorithm

works properly within the GSI framework. These tests include

an examination of user-specified parameters needed for lo-

calization and inflation; see Poterjoy et al. (2019) for a full

parameter list. Once properly configured, the performance of

the local PF and EnKF are compared using 120-h ensemble

forecasts generated every 12 h over the experiment period. To

reduce computational cost, only the first 20members from each

ensemble are used in forecasts.

We compare the data assimilation strategies using error

metrics that target overall performance of HWRF forecasts

during the experiments—rather than traditional tropical cyclone-

focused metrics often used for operational development. This

decision ismotivated by the small sample size available formetrics

such as tropical cyclone track and intensity over the experiment,

as well as their intrinsic limitations for measuring overall model

anddata assimilation performance. Ideally,model forecastswould

be compared directly to point measurements during verification;

e.g., (Poterjoy and Zhang 2014a,b). For the current application,

the lack of upper-air in situ measurements over the open oceans

limits the sample of verifying observation locations over the do-

main. We instead adopt GDAS analyses as our verifying dataset,

which come from an ensemble four-dimensional variational

smoother applied over a 6-h time windows (Kleist and Ide 2015).

In addition to providing a verifying solution that contains more

observations than our current experiments, there is no expecta-

tion for the GDAS solution to be biased more in the direction of

either experiment performed in this study.

We use RMSDs between ensemble mean forecasts and

GDAS analyses to compare the overall performance of the

local PF and EnKF. These errors are averaged spatially over

the verification domain shown by the red hatched region in

Fig. 11. This region consists of grid points that are displaced

at least 500 km laterally from HWRF domain boundaries,

and spaced horizontally every 54 km and vertically every

500m; this spacing was sufficient for reducing most of the large

correlations between verifying grid points. By focusing on

domain-wide performance of the different data assimilation

techniques, forecast skill is dominated by synoptic-scale factors,

but inevitably contains some signal from tropical cyclone posi-

tion, intensity and structure. Given the coarse model grid spac-

ing used for these experiments, we feel this metric provides the

most appropriate indication of how well each data assimilation

method performs.

Figure 11 shows time series plots of RMSDs for u, y, T, and

qy, averaged over all 52 sets of forecasts generated during the

experiment. These results exclude HWRF forecasts from the

first 5 days of sequential data assimilation to remove any

memory of the 0000 UTC 1 September. GDAS ensemble used

to initialize HWRF members on the beginning of the experi-

ment. Ensemble mean forecasts are also scrutinized by ana-

lyzing the frequency at which the local PF provides lower

forecast RMSDs than the EnKF. To summarize forecast skill in

this manner, Fig. 12 shows the median and quartiles of EnKF

minus local PF forecast RMSDs, with blue values indicating

forecast times where the statistics indicate lower error values

for the local PF. Unlike the temporally averaged metric in

Fig. 11, the quantiles shown in Fig. 12 are not skewed by the

presence of forecast outliers that may exist in the verifying

sample, thus providing a secondary metric for forecast skill.

Overall, both sets of statistics indicate marginal forecast

FIG. 11. Ensemble mean forecast RMSDs as a function of forecast lead time for (a) u, (b) y, (c) T, and (d) qy for the EnKF (red lines) and

local PF (blue lines).
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improvements of the local PF over the benchmark EnKF, de-

spite not matching the GDAS solution as closely at early

forecast times. In addition to producing smaller average

medium-range forecast errors than the EnKF, the local PF

tends to produce lower RMSDs more frequently. The most

persistent result occurs for qy forecasts, where the local PF

produces a closer match to GDAS over 75% of the time for

forecasts beyond 36h.

Though not shown in the current manuscript, local PF

forecasts benefit from a more dynamically consistent depiction

of mesoscale features in the model domain, which were loosely

constrained by observation networks present over the open

oceans. A more detailed examination of the data assimilation

algorithms and experiments, including an explanation for why

the EnKF yields a closer match to GDAS at early forecast

times, will be discussed in a future manuscript. The major

findings from this comparison illustrate the value of a dedi-

cated data assimilation framework for examining new meth-

odology for numerical weather prediction. In this case, subtle

differences in model forecast performance are found by com-

paring two different methods over month-long experiments

using sequential data assimilation and satellite biases correc-

tion that is consistent with the HWRF Model.

5. Discussion and conclusions

This manuscript introduces the AOML-UMD ensemble

prediction system, a standalone sequential data assimila-

tion and forecasting framework for the HWRF Model. The

methodology described in this study aims to fill a gap that

currently exists between regional and global forecast sys-

tems that are used to provide numerical guidance for tropical

cyclones. It also provides insight into how future modeling

systems may evolve for tropical cyclone applications in the

advent of greater computing resources and a unified modeling

framework.

The experimental modeling system relies purely on ensemble

data assimilation, owing to its simplicity and straightforward

interpretation. Generating accurate deterministic forecasts for

tropical cyclones is a challenging task for numerical weather

prediction models because of initial condition uncertainty and

the misrepresentation of physical processes during model inte-

gration. A well-calibrated ensemble can offer a much more

complete depiction of how a given storm may evolve with time

by delivering a set of equally likely model forecasts conditioned

on past and present observations. Ensembles also provide the

only affordable means of exploring statistical properties of non-

Gaussian forecast probability densities, which evolve from

nonlinear processes in weather models. While not discussed in

the current manuscript, this factor is important for examining

marginal distributions of the forecast probability density, such as

tropical cyclone track and intensity metrics, and may be nec-

essary for measuring incremental improvements in weather

models. This approach differs from pure deterministic methods,

which focus primarily on trying to identify the mode.

The above strategy is not always feasible for real-time use at

operational centers, but it provides an invaluable framework

for testing various components of a modeling system during

FIG. 12. Differences between ensemble mean forecast RMSDs

for EnKF and local PF experiments as a function of forecast lead

time for (a) u, (b) y, (c) T, and (d) qy. Solid lines indicate median of

differences and dashed lines indicate lower and upper quantiles.

Red lines indicate metrics where the EnKF produces lower errors,

while blue lines indicates metrics where the local PF produces

lower errors.
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retrospective experiments. To demonstrate the utility of a

dedicated sequential framework, we perform a series of ex-

periments with the HWRFModel—an operational model that

has never been examined extensively in this context. For these

experiments, we focus primarily on multimonth observation-

space error estimation for short-range forecasts, satellite data

assimilation capabilities inHWRF, andmonth-long testing of a

new data assimilation algorithm. In addition to uncovering

multiple software errors in the operational HWRF system,

these tests provide a number of important findings that would

have been difficult to achieve without sequential data assimi-

lation. We find that a persistent low-level dry bias develops

early in our experiments when using an extensive coarse-

resolution model configuration that is comparable to the par-

ent domain used by the operational HWRF Model. This bias

likely comes from the use of GDAS to initialize the ensemble

and satellite bias correction coefficients at the first cycle of our

experiments. The moisture bias approaches zero after multiple

months of cycling, but dissipates less when GDAS bias cor-

rection coefficients are adopted in place of online estimates.

While the use of GDAS bias correction values appears to be

one deficiency in the operational strategy, the use of blended

HWRF-GFS prior model solutions by the operational system

removes an upper-level positive moisture bias that occurs in

pure online experiments. Following the online estimate of

satellite bias correction coefficients for HWRF, we reuse the

coefficients in reduced-domain retrospective experiments to

rigorously tune and test a data assimilation method based that

has never been applied for synoptic-scale weather prediction.

This method, called the local PF, is added to GSI so it can be

compared directly with the EnKF. We find the local PF to

provide stable performance over themonth-long testing period

and provide marginal improvements over the benchmark

EnKF. These results are encouraging, owing to the theo-

retical advantages of the local PF for larger sample sizes

and highly nonlinear applications, such as all-sky radiance

data assimilation—neither of which are examined in the

current study.

The forecasting system described here is designed to inform

ongoing efforts to develop a model infrastructure that bridges

between research and operations. In particular, it explores

potential avenues for the future NOAA hurricane analysis and

forecasting system (HAFS), aimed at meeting both short- and

long-term operational forecast needs. In doing so, the current

system targets improvements in probabilistic weather guidance

through: 1) better preprocessing and assimilation of measure-

ments, especially those coming from satellite sensors; 2) novel

data assimilation strategies such as the local particle filter; and

3) a more rigorous estimation of model bias. Ultimately, our

findings strongly suggest that sequential data assimilation ef-

forts should precede advanced model testing for new weather

prediction systems such as HAFS.
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